Supporting Information for "Electronic Correlation Effects on Stabilizing a Perfect Kagome Lattice and Ferromagnetic Fluctuation in LaRu₃Si₂"

Yilin Wang School of Emerging Technology , University of Science and Technology of China , Hefei 230026 , China (Dated: March 21, 2023)

TABLE S1. Values of Hubbard U and Hund's coupling J_H calculated by the code $R_Coulomb.py$ in DFT+EDMFTF package. These values are used for both DFT+U and LDA+DMFT calculations.

U (eV)	1.1	1.5	2.0	3.0	4.0	4.5	5.0	5.5	6.0
J_H (eV)	0.389	0.476	0.563	0.692	0.782	0.817	0.848	0.874	0.897

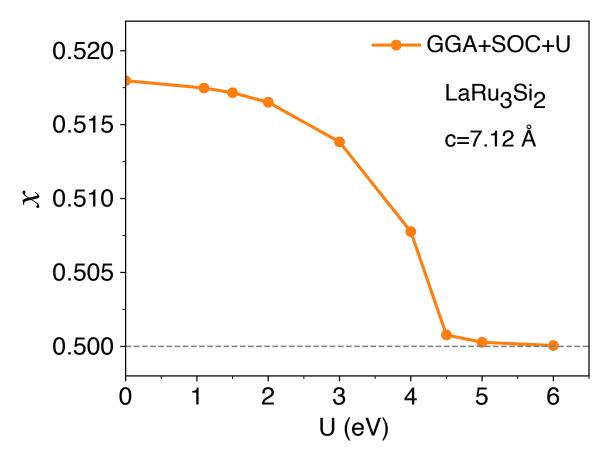


FIG. S1. Fractional coordinates x of Ru sites as function of Hubbard U, relaxed by GGA+U with spin-orbital coupling.

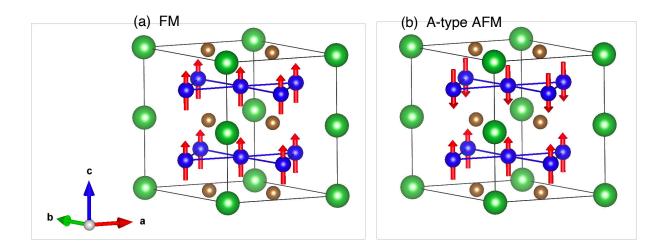


FIG. S2. Magnetic configurations considered in the GGA+U calculations.

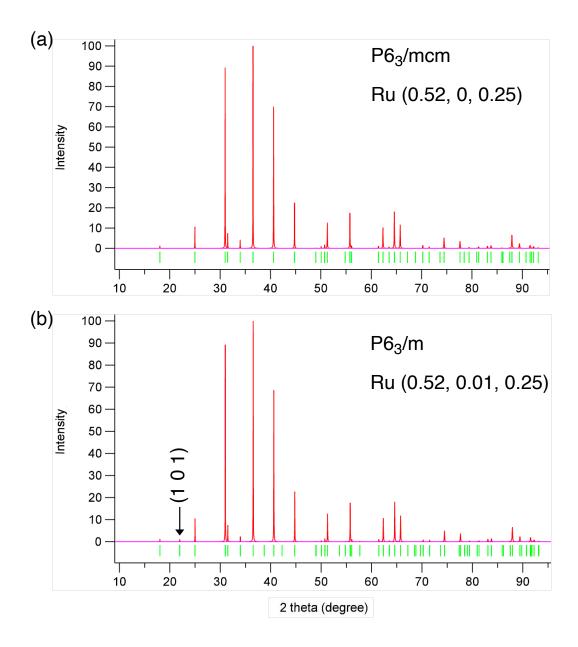


FIG. S3. Simulated XRD pattern of the possible distorted Kagome structure of LaRu₃Si₂. (a) For space group P6₃/mcm with Ru at (0.52, 0, 0.25). (b) For space group P6₃/m with Ru at (0.52, 0.01, 0.25). Lattice parameters are a = 5.676Å and c = 7.12Å. Their only difference is that there is an additional weak peak at (1 0 1) for P6₃/m.